
A Verified UAV Flight Plan Generator
FormaliSE 2023

B. Pollien1, C. Garion1, G. Hattenberger2, P. Roux3, X. Thirioux1

May 2023
1ISAE-SUPAERO, 2ENAC and 3ONERA

Paparazzi

Paparazzi is an autopilot for micro-drones

• Developed at ENAC since 2003,
• Open-Source under GPL license.

Complete drone control system:

• Control software part,
• Design of some hardware components,
• Support for ground and aerial vehicles,
• Support for simultaneous control of several drones,
• User can define their own mission using flight plans.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 1 / 21

Flight Plan

The flight plan (FP)

• describes how the drone might behave when launched,
• is defined in a XML configuration file.

Example:

1. Wait until the GPS connection is set,
2. Take off,
3. Do a circle around a specific GPS position.
4. If battery is less than 20%: Go home and land.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 2 / 21

Presentation of the Generator

Generator

Paparazzi
autopilot

Embedded

The generated C file contains:
• The Flight Plan Header: definition of constants and variables,
• The main function: void auto_nav(void),
• Auxiliary functions:

pre_call_block, post_call_block and forbidden_deroute.
=⇒ Compiled with the autopilot and embedded on the drone.

Function auto_nav:
• Called at 20 Hz,
• Sets navigation parameters for actuators.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 3 / 21

Motivation

Problems:

• The behaviour of flight plans is not formally defined.
• Does the auto_nav function always terminate?
• Generator is a complex software that generates embedded code.

=⇒ Certified Compilation problem

Solutions to similar problems

• CompCert: C compiler proved in Coq.
• Vélus: Lustre compiler proved in Coq.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 4 / 21

Coq

Coq is a proof assistant
• Developed by Inria,
• Based on the Gallina language.

Software for writing and verifying formal proofs
• Proofs of mathematical theorems,
• Proofs of properties on programs.

=⇒ Coq code can be extracted into OCaml code with guarantees.

Our solution: New flight plan generator developed and verified in Coq.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 5 / 21

New Verified Flight Plan Generator (VFPG)

Parser Pre-processor

Gallina
Generator

PrinterPost-processor

FP_XML
flight_plan

(FP)

Header

Clight
(FPC)

C
Focus on the
Gallina part

Pre-processing: Manages included files, converts block names into indexes...
Post-processing: Produces a compilable C code.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 6 / 21

Overview of the semantics preservation proof

FP
Generator

FPC

efp

ofp

e′fp

FP semantics

ec

oc

e′c

FPC semantics
B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 7 / 21

Flight Plan Language

Flight Plan Structure in Gallina

Record flight_plan := {
blocks: list fp_block
excpts: list fp_exception;
fb_deroutes: list fp_fb_deroute; (* New feature *)

}

Record fp_block := {
id: block_id;
excpts: list fp_exception;
stages: list fp_stage;

}.

Record fp_exception := {
cond: c_cond;
id: block_id;
exec: option c_code;

}.

Inductive fp_stage :=
WHILE (cond: c_cond) (body: list fp_stage)
| SET (var: var_name) (value: c_value)
| CALL (fun: c_code)
| DEROUTE (idb: block_id)
| RETURN (reset: bool)
| NAV (nav_mode: fp_nav_mode) (init: bool).

Record fp_fb_deroute := {
from: block_id;
to: block_id;
only_when: option c_cond;

}.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 8 / 21

Example: Potential Execution of a Flight Plan

Flight Plan:
{| excpts : [],

fb_deroutes: [],
blocks : [
{| id: 0, excpts: [],

stages: [
CALL "InitSensors()";
WHILE "!GPSFixValid()" [];
SET "home" "GPSPosHere()"]

|};
{| id: 1, excpts: [],

stages: [
NAV (TakeOff params) true;
DEROUTE 10]

|};
... {| id: 10, ... |} ...
]

|}

Results of auto_nav:

Call Current Code ExecutedBlock

1 0 InitSensors()
!GPSFixValid()

~w true
2 0 !GPSFixValid()

~w true
3 0 !GPSFixValid()

~w true
...

...
...

9 0 !GPSFixValid()
~w false

home = GPSPosHere()
10 1 StartMotors()
11 1 TakeOffDone()

~w false
12 1 TakeOffDone()

~w false
...

...
...

20 1 TakeOffDone()
~w true

Deroute → 10
21 10 ...
...

...
...B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 9 / 21

Generator

Generator Function

Definition generate_flight_plan:

flight_plan → res_generator

Inputs:
• Flight plan to convert.

Outputs:

• Variant res_generator :=
| CODE (res: Clight.program ∗ list err_msg)
| ERROR (errs: list err_msg).

• Warnings and errors currently produced during the generation.
• detect when there is a possible deroute that is forbidden,
• detect when the flight plan has an incorrect size.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 10 / 21

Example of generated C Code

Example of a flight plan:
{| excpts: [],

fb_deroutes: [],
blocks: [
{| id: 0,

excpts: [],
stages: [
CALL "func1()";
CALL "func2()"
]

|}
]

|}

C code generated:
static inline void auto_nav(void) {

switch (get_nav_block()) {
case 0: // Block 0

switch (get_nav_stage()) {
case 0: // Stage 0

func1();
case 1: // Stage 1

func2();
default:
case 3: // Default Stage

NextBlock();
break;

}
break;

case 1: // Default Block
GEN_DEFAULT_C_CODE()

}
}

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 11 / 21

Steps of generate_flight_plan function

FP
Extend Size

Verification
Clight

Generator

Size Errors

FPC

FPE FPS

Extended Flight Plan:
• Index stages,
• Split NAV into NAV_INIT and NAV,
• Flatten stages contained in a WHILE stage.

Size verification:
• Check block indexing,
• Check that numbers of blocks and stages are less

than 256,
• Check that block_id fields are 8 bits values.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 12 / 21

Verification of the Generator

Generic Big Step Semantics for Flight Plans

Definition (fp_semantics)
A generic definition for the flight plan semantics.

Record fp_semantics: Type := FP_Semantics_gen {
(** Environment for the semantics *)
env: Type;
(** Properties stating if an env is an initial environment *)
initial_env: env → Prop;
(** Properties stating the execution of the auto_nav function *)
step: env → env → Prop;

}.

Instanciation of the semantics:
• FP semantics: semantics_fp,
• FPC semantics: semantics_fpc,

• FPE semantics: semantics_fpe,
• FPS semantics: semantics_fps.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 13 / 21

FP Semantics: Drone Environment

The drone environment can be modelled in a variety of ways.

From the point of view of the flight plan execution, the global drone environment can be split into 2
distinct elements:

• the memory storing the execution state of the flight plan,
• the memory that can be modified by flight plan external functions.

Remark
External functions can be:
• complex functions that corresponds to navigation stages,
• arbitrary C code contained in the flight plan.
=⇒ It is not possible to represent the effect of their execution.

=⇒ We assume that these 2 memory regions are strictly disjoint.
B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 14 / 21

FP Semantics: Abstraction of the Drone Environment

The FP semantics will use fp_env, an abstraction of the drone environment.
Record fp_env := {

state: fp_state;
trace: fp_trace;

}.

fp_state represents an abstraction of the current state of the flight plan.
Record fp_state := {

idb: block_id; stages: list fp_stages; (* Current position *)
lidb: block_id; lstages: list fp_stages; (* Last position *)

}

A position is a couple of a block ID and the remaining stages to execute.

fp_trace represents the history of external functions execution.
Variant fp_event := COND (cond ∗ bool) | C_CODE (c: c_code).
Definition fp_trace := list fp_event.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 15 / 21

Bisimulation relation

fp_simulation describes if FP2 can simulate every behaviour of FP1.
Record fp_simulation (FP1 FP2: fp_semantics)

(match_envs: env FP1 → env FP2 → Prop): Prop := {
match_initial_envs:

∀ (e1: FP1.env), initial_env e1 →
∃ (e2: FP2.env), initial_env e2 ∧ match_envs e1 e2;

match_step:
∀ (e1 e1’: FP1.env), step e1 e1’ →
∀ (e2: FP2.env), match_envs e1 e2 →

∃ (e2’: FP2.env), step e2 e2’ ∧ match_envs e1’ e2’;
}.

Definition of a bisimulation relation between 2 semantics.
Inductive bisimulation (FP1 FP2: fp_semantics) : Prop :=
Bisimulation (match_envs: env L1 → env L2 → Prop)

(forward_simulation: fp_simulation FP1 FP2 match_envs).
(backward_simulation: fp_simulation FP2 FP1 match_envs).

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 16 / 21

Correctness theorem of the generator

Theorem (bisim_fp_fpc)

∀ fp prog warnings,
generator fp = CODE (prog, warnings)
→ bisimulation (semantics_fp fp) (semantics_fpc prog).

This theorem states that the generator preserves the semantics.

Forward simulation

FP behaviours is simulated by the Clight code.

Backward simulation

Every possible execution of the Clight code is described by the FP semantics.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 17 / 21

Verification of the bisim_fp_fpc

FP
Extend Size

Verification
Clight

Generator
FPC

FPE FPS

efp

e′fp

FP semantics

efpe

e′fpe

FPE semantics

efps

e′c

FPS semantics

ec

e′c

FPC semantics

Lemma compose_bisimulations:
∀ FP1 FP2 FP3, bisimulation FP1 FP2

→ bisimulation FP2 FP3
→ bisimulation FP1 FP3.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 18 / 21

Proof based on axioms

Interpretation of the arbitrary C code.
=⇒ Parameter eval: fp_env → cond → (bool ∗ fp_env).
=⇒ New axioms to convert arbitrary C code into traces.

Axiom stating that the function create_ident is injective.

Classical Coq standard library:
excluded middle, proof irrelevance and functional extensionality.

An axiom to prove that the Clight semantics is deterministic.
not mandatory, will be removed in future work.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 19 / 21

Lessons Learned & Conclusion

Lessons Learned

Development methodology
• Constrained by the previous generator:

Input language, C code generated...

• Split the proof in 3 independent parts.
• Forced clarification of the semantics:

• Unexpected behaviour (ex: RETURN after a DEROUTE),
• Bug (ex: the FP contains more than 256 blocks/stages).

Technical remarks
• 1.3k loc of OCaml and 17k loc of Coq (12% of working code).
• Verification functions produce dependent type.

=⇒ Avoid axioms, improves confidence in preprocessing.
• Using Clight has some downside.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 20 / 21

Conclusion

Summary:

• Development of a new generator in Coq,
• Formalisation of the flight plan semantics,
• New features added,
• Verification of the preservation of the semantics.

Perspectives:

• Remove axiom to prove that Clight semantics is deterministic,
• Verify properties on the flight plan language,
• Integrate the new generator in Paparazzi toolchain,
• Reduce the number of pre-processing steps,
• Generalize the generator.

This work is supported by the Defense Innovation Agency (AID) of the French Ministry of Defense
(research project CONCORDE N 2019 65 0090004707501)

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux A Verified UAV Flight Plan Generator 21 / 21

	Flight Plan Language
	Generator
	Verification of the Generator
	Lessons Learned & Conclusion

