1588 >

Institut Supérieur de I'Aéronautique et de I'Espace

SUPAERO

Formal verification of an UAV autopilot

JDD @ DISC

B. Pollien!, C. Garion®, G. Hattenberger?, P. Roux®, X. Thirioux!
June 23, 2023

HISAE-SUPAERO, ?ENAC and 3ONERA



The development of a system can be divided into 3 steps:

1. Specification of the functional needs and constraints.
2. Implementation of the system.

3. Verification that the implementation respects the specification.

Verification methods:

= Code reviews,

= Tests,

= Formal methods.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 1/12



Formal methods

= Verification techniques based on mathematical techniques and tools
= Provides stronger guarantees but with some cost

= Recommended in avionics with DO-178C and DO-333 standards

Examples: abstract interpretation, deductive methods, model-checking

The goals of my PhD

= Define verification processes that use formal methods,

= Apply these methods to a drone autopilot: Paparazzi.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux

Formal verification of an UAV autopilot 2/12



Paparazzi

Paparazzi is an autopilot for micro-drones

= Developed at ENAC since 2003,

= Open-Source under GPL license.

Complete drone control system:

= Control software part,

= Design of some hardware components,

= Support for ground and aerial vehicles,

= Support for simultaneous control of several drones,

= User can define their own mission using flight plans.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 3/12



Paparazzi as a formal method subject of study?

Paparazzi is a good candidate for testing if formal methods are usable/efficient:

= The autopilot has been developed:

= without verification purpose,
= by good programmers,
= classic C idioms used in the code (pointers etc).

= The code base is consequent (~ 350k loc).

My PhD focuses on 2 critical components:

= a mathematical library used by the control system,

= a flight plan generator producing embedded C code.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 4 /12



Mathematical Library




Formal Verification of a Mathematical Library

Analysis of a mathematical library of Paparazzi: a
0

= Checking for the absence of runtime errors,
Software Analyzers
= Verification of some functional properties,

= Without modifying the code.

Verification done using Frama-C, a C code analysis tool
= Developed by CEA and Inria,

= Modular, which supports different analysis methods
ex: static analysis with EVA or dynamic analysis with E-ACSL.

Note: We used the WP or EVA plugins implementing formal methods technics.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 5/12



Formal verification with Frama-C

Verification process of a C program using Frama-C:
1. Code specification with ACSL (ANSI C Specification Language),
2. Generation of the abstract syntax tree of the analyzed code,

3. Analysis of the tree by the plugins
= Verify if the specification is respected.

Our goals were to determine the minimal functionnal contracts to guarantee properties:
= No runtime errors: Dereferencing an invalid pointer, division by 0, overflows...

= Functional properties: Offer guarantees on the behavior or the result of a function.

—> Approximately 3,500 lines of annotation to verify 3,000 lines of code.

gitlab.isae-supaero.fr/b.pollien /paparazzi-frama-c

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 6/ 12


https://www.gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c

Flight Plan Generator




Flight Plan

The flight plan (FP)

= describes how the drone might behave when launched,

= is defined in a XML configuration file.

Example:
1. Wait until the GPS connection is set,
2. Take off,

3. Do a circle around a specific GPS position.

4. If battery is less than 20%: Go home and land.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux

Formal verification of an UAV autopilot 7/12



Presentation of the Generator

Papargzzi
The generated C file contains: autopilot
= The Flight Plan Header: definition of constants and variables,
Embedded

= The main function: void auto_nav(void),

= Auxiliary functions:
pre_call_block, post_call_block and forbidden_deroute.

— Compiled with the autopilot and embedded on the drone.

Function auto_nav:
= Called at 20 Hz,

= Sets navigation parameters for actuators.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 8 /12



Problems:

= The behaviour of flight plans is not formally defined.
= Does the auto_nav function always terminate?

= The generator is a complex software that generates embedded code.

—> Certified Compilation problem

Solutions to similar problems

= CompCert: C compiler proved in Coq.

= Vélus: Lustre compiler proved in Coq.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 9/12



Coq

Cogq is a proof assistant
= Developed by Inria,

= Based on the Gallina language.

Software for writing and verifying formal proofs
= Proofs of mathematical theorems,

= Proofs of properties on programs.
— Coq code can be extracted into OCaml code with guarantees.

Our solution: New flight plan generator with
= a minimal front-end in Ocaml,

= a main generator developed and verified in Coq.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 10 / 12



Process to develop and verify the new generator
1. Generator development in Gallina % G
e Inout: FP enerator
L Cllght

= Ouput: Cligt from CompCert

€fp €c

2. Formalisation of the FP semantics

3. Use the already defined semantics of Clight Ofp AAAAAAAAA= Oc

4. Prove the semantics preservation property e,’cp AAAAAAAAAAA €]
FP semantics Clight semantics

— 1.3k loc of Ocaml and 17k loc of Coq (12% of working code)

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 11 /12



Conclusion




Formal verification of an UAV autopilot

Study case: Paparazzi
Work done:

= Technical report:
= Formal verification for autopilots: preliminary state of the start
= A gentle introduction to C code verification using the Frama-C platform

= Verification of some parts of Paparazzi mathematical library
Publications: AFADL 2021, FMICS 2021

= Development of a verified flight plan generator
Publications: FormaliSE 2023

Current work:

= Writting my thesis

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 12 /12


https://oatao.univ-toulouse.fr/27987/
https://hal.science/hal-03625208
https://oatao.univ-toulouse.fr/28071/
https://oatao.univ-toulouse.fr/28279/
https://TODO

	Mathematical Library
	Flight Plan Generator
	Conclusion

