
Formal verification of an UAV autopilot
JDD @ DISC

B. Pollien1, C. Garion1, G. Hattenberger2, P. Roux3, X. Thirioux1

June 23, 2023
1ISAE-SUPAERO, 2ENAC and 3ONERA



Context

The development of a system can be divided into 3 steps:

1. Specification of the functional needs and constraints.
2. Implementation of the system.
3. Verification that the implementation respects the specification.

Verification methods:

• Code reviews,
• Tests,
• Formal methods.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 1 / 12



Context

Formal methods

• Verification techniques based on mathematical techniques and tools
• Provides stronger guarantees but with some cost
• Recommended in avionics with DO-178C and DO-333 standards
• Examples: abstract interpretation, deductive methods, model-checking

The goals of my PhD

• Define verification processes that use formal methods,
• Apply these methods to a drone autopilot: Paparazzi.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 2 / 12



Paparazzi

Paparazzi is an autopilot for micro-drones

• Developed at ENAC since 2003,
• Open-Source under GPL license.

Complete drone control system:

• Control software part,
• Design of some hardware components,
• Support for ground and aerial vehicles,
• Support for simultaneous control of several drones,
• User can define their own mission using flight plans.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 3 / 12



Paparazzi as a formal method subject of study?

Paparazzi is a good candidate for testing if formal methods are usable/efficient:

• The autopilot has been developed:
• without verification purpose,
• by good programmers,
• classic C idioms used in the code (pointers etc).

• The code base is consequent (∼ 350k loc).

My PhD focuses on 2 critical components:

• a mathematical library used by the control system,
• a flight plan generator producing embedded C code.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 4 / 12



Mathematical Library



Formal Verification of a Mathematical Library

Analysis of a mathematical library of Paparazzi:

• Checking for the absence of runtime errors,
• Verification of some functional properties,
• Without modifying the code.

Verification done using Frama-C, a C code analysis tool
• Developed by CEA and Inria,
• Modular, which supports different analysis methods

ex: static analysis with EVA or dynamic analysis with E-ACSL.

Note: We used the WP or EVA plugins implementing formal methods technics.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 5 / 12



Formal verification with Frama-C

Verification process of a C program using Frama-C:
1. Code specification with ACSL (ANSI C Specification Language),
2. Generation of the abstract syntax tree of the analyzed code,
3. Analysis of the tree by the plugins

=⇒ Verify if the specification is respected.

Our goals were to determine the minimal functionnal contracts to guarantee properties:
• No runtime errors: Dereferencing an invalid pointer, division by 0, overflows...
• Functional properties: Offer guarantees on the behavior or the result of a function.

=⇒ Approximately 3,500 lines of annotation to verify 3,000 lines of code.

gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 6 / 12

https://www.gitlab.isae-supaero.fr/b.pollien/paparazzi-frama-c


Flight Plan Generator



Flight Plan

The flight plan (FP)

• describes how the drone might behave when launched,
• is defined in a XML configuration file.

Example:

1. Wait until the GPS connection is set,
2. Take off,
3. Do a circle around a specific GPS position.
4. If battery is less than 20%: Go home and land.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 7 / 12



Presentation of the Generator

Generator

Paparazzi
autopilot

Embedded

The generated C file contains:
• The Flight Plan Header: definition of constants and variables,
• The main function: void auto_nav(void),
• Auxiliary functions:

pre_call_block, post_call_block and forbidden_deroute.
=⇒ Compiled with the autopilot and embedded on the drone.

Function auto_nav:
• Called at 20 Hz,
• Sets navigation parameters for actuators.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 8 / 12



Motivation

Problems:

• The behaviour of flight plans is not formally defined.
• Does the auto_nav function always terminate?
• The generator is a complex software that generates embedded code.

=⇒ Certified Compilation problem

Solutions to similar problems

• CompCert: C compiler proved in Coq.
• Vélus: Lustre compiler proved in Coq.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 9 / 12



Coq

Coq is a proof assistant
• Developed by Inria,
• Based on the Gallina language.

Software for writing and verifying formal proofs
• Proofs of mathematical theorems,
• Proofs of properties on programs.

=⇒ Coq code can be extracted into OCaml code with guarantees.

Our solution: New flight plan generator with
• a minimal front-end in Ocaml,
• a main generator developed and verified in Coq.

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 10 / 12



Process to develop and verify the new generator

1. Generator development in Gallina
• Input: FP
• Ouput: Cligt from CompCert

2. Formalisation of the FP semantics

3. Use the already defined semantics of Clight

4. Prove the semantics preservation property

FP
Generator

Clight

efp

e′fp

ofp

FP semantics

ec

e′c

oc

Clight semantics

=⇒ 1.3k loc of Ocaml and 17k loc of Coq (12% of working code)

B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 11 / 12



Conclusion



Summary

Formal verification of an UAV autopilot
Study case: Paparazzi
Work done:

• Technical report:
• Formal verification for autopilots: preliminary state of the start
• A gentle introduction to C code verification using the Frama-C platform

• Verification of some parts of Paparazzi mathematical library
Publications: AFADL 2021, FMICS 2021

• Development of a verified flight plan generator
Publications: FormaliSE 2023

Current work:

• Writting my thesis
B. Pollien, C. Garion, G. Hattenberger, P. Roux, X. Thirioux Formal verification of an UAV autopilot 12 / 12

https://oatao.univ-toulouse.fr/27987/
https://hal.science/hal-03625208
https://oatao.univ-toulouse.fr/28071/
https://oatao.univ-toulouse.fr/28279/
https://TODO

	Mathematical Library
	Flight Plan Generator
	Conclusion

